[FIXED] Wie kann ich einen bedingten Join in Python Pandas durchführen/umgehen?

Ausgabe

Ich versuche, zeitbasierte Aggregationen in Pandas basierend auf Datumswerten zu berechnen, die in separaten Tabellen gespeichert sind.

Die Oberseite der ersten Tabelle table_asieht folgendermaßen aus:

    COMPANY_ID  DATE            MEASURE
    1   2010-01-01 00:00:00     10
    1   2010-01-02 00:00:00     10
    1   2010-01-03 00:00:00     10
    1   2010-01-04 00:00:00     10
    1   2010-01-05 00:00:00     10

Hier ist der Code zum Erstellen der Tabelle:

    table_a = pd.concat(\
    [pd.DataFrame({'DATE': pd.date_range("01/01/2010", "12/31/2010", freq="D"),\
    'COMPANY_ID': 1 , 'MEASURE': 10}),\
    pd.DataFrame({'DATE': pd.date_range("01/01/2010", "12/31/2010", freq="D"),\
    'COMPANY_ID': 2 , 'MEASURE': 10})])

Die zweite Tabelle table_bsieht so aus:

        COMPANY     END_DATE
        1   2010-03-01 00:00:00
        1   2010-06-02 00:00:00
        2   2010-03-01 00:00:00
        2   2010-06-02 00:00:00

und der Code zum Erstellen lautet:

    table_b = pd.DataFrame({'END_DATE':pd.to_datetime(['03/01/2010','06/02/2010','03/01/2010','06/02/2010']),\
                    'COMPANY':(1,1,2,2)})

Ich möchte in der Lage sein, die Summe der Spalte „Kennzahl“ für jede „COMPANY_ID“ für jeden 30-Tage-Zeitraum vor dem „END_DATE“ in abzurufen table_b.

Dies ist (glaube ich) das SQL-Äquivalent:

 select
       b.COMPANY_ID,
       b.DATE
       sum(a.MEASURE) AS MEASURE_TO_END_DATE
 from table_a a, table_b b
 where a.COMPANY = b.COMPANY and
       a.DATE < b.DATE and
       a.DATE > b.DATE - 30  
 group by b.COMPANY;

Lösung

Nun, ich kann mir ein paar Möglichkeiten vorstellen:

  1. Sprengen Sie den Datenrahmen im Wesentlichen, indem Sie einfach das genaue Feld ( company) zusammenführen … und filtern Sie dann nach dem Zusammenführen nach den 30-Tage-Fenstern.
  • sollte schnell sein, könnte aber viel Speicher verbrauchen
  1. Verschieben Sie das Zusammenführen und Filtern im 30-Tage-Fenster in einegroupby() .
  • führt zu einer Zusammenführung für jede Gruppe, ist also langsamer, sollte aber weniger Speicher verbrauchen

Option 1

Angenommen, Ihre Daten sehen wie folgt aus (ich habe Ihre Beispieldaten erweitert):

print df

    company       date  measure
0         0 2010-01-01       10
1         0 2010-01-15       10
2         0 2010-02-01       10
3         0 2010-02-15       10
4         0 2010-03-01       10
5         0 2010-03-15       10
6         0 2010-04-01       10
7         1 2010-03-01        5
8         1 2010-03-15        5
9         1 2010-04-01        5
10        1 2010-04-15        5
11        1 2010-05-01        5
12        1 2010-05-15        5

print windows

   company   end_date
0        0 2010-02-01
1        0 2010-03-15
2        1 2010-04-01
3        1 2010-05-15

Erstellen Sie ein Anfangsdatum für die 30-Tage-Fenster:

windows['beg_date'] = (windows['end_date'].values.astype('datetime64[D]') -
                       np.timedelta64(30,'D'))
print windows

   company   end_date   beg_date
0        0 2010-02-01 2010-01-02
1        0 2010-03-15 2010-02-13
2        1 2010-04-01 2010-03-02
3        1 2010-05-15 2010-04-15

Führen Sie nun eine Zusammenführung durch und wählen Sie dann basierend darauf aus, ob sie in und datefällt :beg_dateend_date

df = df.merge(windows,on='company',how='left')
df = df[(df.date >= df.beg_date) & (df.date <= df.end_date)]
print df

    company       date  measure   end_date   beg_date
2         0 2010-01-15       10 2010-02-01 2010-01-02
4         0 2010-02-01       10 2010-02-01 2010-01-02
7         0 2010-02-15       10 2010-03-15 2010-02-13
9         0 2010-03-01       10 2010-03-15 2010-02-13
11        0 2010-03-15       10 2010-03-15 2010-02-13
16        1 2010-03-15        5 2010-04-01 2010-03-02
18        1 2010-04-01        5 2010-04-01 2010-03-02
21        1 2010-04-15        5 2010-05-15 2010-04-15
23        1 2010-05-01        5 2010-05-15 2010-04-15
25        1 2010-05-15        5 2010-05-15 2010-04-15

Sie können die 30-Tage-Fenstersummen berechnen, indem Sie nach companyund gruppieren end_date:

print df.groupby(['company','end_date']).sum()

                    measure
company end_date           
0       2010-02-01       20
        2010-03-15       30
1       2010-04-01       10
        2010-05-15       15

Option #2 Verschiebt alle Zusammenführungen in ein Groupby. Dies sollte besser im Gedächtnis sein, aber ich würde viel langsamer denken:

windows['beg_date'] = (windows['end_date'].values.astype('datetime64[D]') -
                       np.timedelta64(30,'D'))

def cond_merge(g,windows):
    g = g.merge(windows,on='company',how='left')
    g = g[(g.date >= g.beg_date) & (g.date <= g.end_date)]
    return g.groupby('end_date')['measure'].sum()

print df.groupby('company').apply(cond_merge,windows)

company  end_date  
0        2010-02-01    20
         2010-03-15    30
1        2010-04-01    10
         2010-05-15    15

Eine weitere Option Wenn sich Ihre Fenster nun nie überlappen (wie in den Beispieldaten), könnten Sie alternativ Folgendes tun, was keinen Datenrahmen sprengt, aber ziemlich schnell ist:

windows['date'] = windows['end_date']

df = df.merge(windows,on=['company','date'],how='outer')
print df

    company       date  measure   end_date
0         0 2010-01-01       10        NaT
1         0 2010-01-15       10        NaT
2         0 2010-02-01       10 2010-02-01
3         0 2010-02-15       10        NaT
4         0 2010-03-01       10        NaT
5         0 2010-03-15       10 2010-03-15
6         0 2010-04-01       10        NaT
7         1 2010-03-01        5        NaT
8         1 2010-03-15        5        NaT
9         1 2010-04-01        5 2010-04-01
10        1 2010-04-15        5        NaT
11        1 2010-05-01        5        NaT
12        1 2010-05-15        5 2010-05-15

Diese Zusammenführung fügt im Wesentlichen Ihre Fenster-Enddaten in den Datenrahmen ein, und das Auffüllen der Enddaten (nach Gruppe) gibt Ihnen eine Struktur, mit der Sie Ihre Summenfenster einfach erstellen können:

df['end_date'] = df.groupby('company')['end_date'].apply(lambda x: x.bfill())

print df

    company       date  measure   end_date
0         0 2010-01-01       10 2010-02-01
1         0 2010-01-15       10 2010-02-01
2         0 2010-02-01       10 2010-02-01
3         0 2010-02-15       10 2010-03-15
4         0 2010-03-01       10 2010-03-15
5         0 2010-03-15       10 2010-03-15
6         0 2010-04-01       10        NaT
7         1 2010-03-01        5 2010-04-01
8         1 2010-03-15        5 2010-04-01
9         1 2010-04-01        5 2010-04-01
10        1 2010-04-15        5 2010-05-15
11        1 2010-05-01        5 2010-05-15
12        1 2010-05-15        5 2010-05-15

df = df[df.end_date.notnull()]
df['beg_date'] = (df['end_date'].values.astype('datetime64[D]') -
                   np.timedelta64(30,'D'))

print df

   company       date  measure   end_date   beg_date
0         0 2010-01-01       10 2010-02-01 2010-01-02
1         0 2010-01-15       10 2010-02-01 2010-01-02
2         0 2010-02-01       10 2010-02-01 2010-01-02
3         0 2010-02-15       10 2010-03-15 2010-02-13
4         0 2010-03-01       10 2010-03-15 2010-02-13
5         0 2010-03-15       10 2010-03-15 2010-02-13
7         1 2010-03-01        5 2010-04-01 2010-03-02
8         1 2010-03-15        5 2010-04-01 2010-03-02
9         1 2010-04-01        5 2010-04-01 2010-03-02
10        1 2010-04-15        5 2010-05-15 2010-04-15
11        1 2010-05-01        5 2010-05-15 2010-04-15
12        1 2010-05-15        5 2010-05-15 2010-04-15

df = df[(df.date >= df.beg_date) & (df.date <= df.end_date)]
print df.groupby(['company','end_date']).sum()

                    measure
company end_date           
0       2010-02-01       20
        2010-03-15       30
1       2010-04-01       10
        2010-05-15       15

Eine andere Alternative besteht darin, Ihren ersten Datenrahmen mit täglichen Daten neu abzutasten und dann rolling_sums mit einem 30-Tage-Fenster zu berechnen. und wählen Sie am Ende die Daten aus, die Sie interessieren. Dies könnte auch ziemlich speicherintensiv sein.


Beantwortet von –
Karl D.


Antwort geprüft von –
Candace Johnson (FixError Volunteer)

0 Shares:
Leave a Reply

Your email address will not be published. Required fields are marked *

You May Also Like