Ausgabe
Ich kann meine Daten nicht vereinfachen, also setze ich sie vollständig ein. Ich möchte die bestmögliche Mannschaft aus 11 Spielern nach der Rubrik „Niveau“ aufbauen. Jede „id“ hat einen „niveau“-Vermerk für die „statut“-Spalte. Ich denke, es wäre notwendig, alle möglichen Kombinationen von “niveau” zu testen, ohne dass es “id”-Duplikate gibt, um das beste Durchschnittsniveau der 11 Spieler zu erhalten, aber ich weiß nicht, wie ich vorgehen soll. Hast du bitte eine Idee? Vielen Dank
import pandas as pd
data = {'statut': {0: 'titulaire_01', 1: 'titulaire_01', 2: 'titulaire_01', 3: 'titulaire_01', 4: 'titulaire_01', 5: 'titulaire_01', 6: 'titulaire_01', 7: 'titulaire_01', 8: 'titulaire_02', 9: 'titulaire_02', 10: 'titulaire_02', 11: 'titulaire_02', 12: 'titulaire_02', 13: 'titulaire_02', 14: 'titulaire_02', 15: 'titulaire_02', 16: 'titulaire_02', 17: 'titulaire_02', 18: 'titulaire_02', 19: 'titulaire_02', 20: 'titulaire_02', 21: 'titulaire_02', 22: 'titulaire_02', 23: 'titulaire_02', 24: 'titulaire_02', 25: 'titulaire_02', 26: 'titulaire_02', 27: 'titulaire_02', 28: 'titulaire_03', 29: 'titulaire_03', 30: 'titulaire_03', 31: 'titulaire_03', 32: 'titulaire_03', 33: 'titulaire_03', 34: 'titulaire_03', 35:
'titulaire_03', 36: 'titulaire_03', 37: 'titulaire_03', 38: 'titulaire_03', 39: 'titulaire_03', 40: 'titulaire_03', 41: 'titulaire_03', 42: 'titulaire_03', 43: 'titulaire_03', 44: 'titulaire_03', 45: 'titulaire_03', 46: 'titulaire_03', 47: 'titulaire_03', 48: 'titulaire_04', 49: 'titulaire_04', 50: 'titulaire_04', 51: 'titulaire_04', 52: 'titulaire_04', 53: 'titulaire_04', 54: 'titulaire_04', 55: 'titulaire_04', 56: 'titulaire_04', 57: 'titulaire_05', 58: 'titulaire_05', 59: 'titulaire_05', 60: 'titulaire_05', 61: 'titulaire_05', 62: 'titulaire_05', 63: 'titulaire_05', 64: 'titulaire_05', 65: 'titulaire_05', 66: 'titulaire_05', 67: 'titulaire_06', 68: 'titulaire_06', 69: 'titulaire_06', 70: 'titulaire_06', 71: 'titulaire_06', 72: 'titulaire_06', 73: 'titulaire_06', 74: 'titulaire_06', 75: 'titulaire_06', 76: 'titulaire_06', 77: 'titulaire_06', 78: 'titulaire_06', 79: 'titulaire_07', 80: 'titulaire_07', 81: 'titulaire_07', 82: 'titulaire_07', 83: 'titulaire_07', 84: 'titulaire_07', 85: 'titulaire_07', 86: 'titulaire_07', 87: 'titulaire_07', 88: 'titulaire_07', 89: 'titulaire_07', 90: 'titulaire_07', 91: 'titulaire_07', 92: 'titulaire_07', 93: 'titulaire_07', 94: 'titulaire_07', 95: 'titulaire_07', 96: 'titulaire_07', 97: 'titulaire_07', 98: 'titulaire_08', 99: 'titulaire_08', 100: 'titulaire_08', 101: 'titulaire_08', 102: 'titulaire_08', 103: 'titulaire_08', 104: 'titulaire_08', 105: 'titulaire_08', 106: 'titulaire_08', 107: 'titulaire_08', 108: 'titulaire_08', 109: 'titulaire_08', 110: 'titulaire_08', 111: 'titulaire_08', 112: 'titulaire_08', 113: 'titulaire_08', 114: 'titulaire_08', 115: 'titulaire_08', 116: 'titulaire_08', 117: 'titulaire_09', 118: 'titulaire_09', 119: 'titulaire_09', 120: 'titulaire_09', 121: 'titulaire_09', 122: 'titulaire_09', 123: 'titulaire_09', 124: 'titulaire_09', 125: 'titulaire_09', 126: 'titulaire_09', 127: 'titulaire_09', 128: 'titulaire_09', 129: 'titulaire_09', 130: 'titulaire_09', 131: 'titulaire_09', 132: 'titulaire_09', 133: 'titulaire_09', 134: 'titulaire_09', 135: 'titulaire_09', 136: 'titulaire_10', 137: 'titulaire_10', 138: 'titulaire_10', 139: 'titulaire_10', 140: 'titulaire_10', 141: 'titulaire_10', 142: 'titulaire_10', 143: 'titulaire_10', 144: 'titulaire_10', 145: 'titulaire_10', 146: 'titulaire_10', 147: 'titulaire_10', 148: 'titulaire_10', 149: 'titulaire_10', 150: 'titulaire_10', 151: 'titulaire_10', 152: 'titulaire_10', 153: 'titulaire_10', 154: 'titulaire_10', 155: 'titulaire_10', 156: 'titulaire_10', 157: 'titulaire_10', 158: 'titulaire_11', 159: 'titulaire_11', 160: 'titulaire_11', 161: 'titulaire_11', 162: 'titulaire_11', 163: 'titulaire_11', 164: 'titulaire_11', 165: 'titulaire_11', 166: 'titulaire_11', 167: 'titulaire_11', 168: 'titulaire_11', 169: 'titulaire_11', 170: 'titulaire_11', 171: 'titulaire_11', 172: 'titulaire_11', 173: 'titulaire_11', 174: 'titulaire_11', 175: 'titulaire_11', 176: 'titulaire_11', 177: 'titulaire_11', 178: 'titulaire_11', 179: 'titulaire_11'}, 'id': {0: 2002134607, 1: 2002043469, 2: 67156610, 3: 73201503, 4: 2000165962, 5: 2000143545, 6: 2002042688, 7: 2000055323, 8: 49054631, 9: 48031358, 10: 49048802, 11: 2002042816, 12: 2000045508, 13: 73201458, 14: 67191910, 15: 2002134617, 16: 2002042628, 17: 2000023214, 18: 2000165961, 19: 2000121963, 20: 2000045487, 21: 2000006106, 22: 14196664, 23: 2000055604, 24: 2002043613, 25: 49054633, 26: 49037900, 27: 2002043635, 28: 48031358, 29: 49037900, 30: 2002043635, 31: 2000121963, 32: 2000165961, 33: 67191910, 34: 2002042816, 35: 73201458, 36: 49054633, 37: 2000045487, 38: 2002043613, 39: 2000006106, 40: 2000055604, 41: 2000023214, 42: 2000045508, 43: 2002042628, 44: 14196664, 45: 2002134617, 46: 49054631, 47: 49048802, 48: 49040506, 49: 85126966, 50: 83169864, 51: 2002043476, 52: 2000045508, 53: 2002043613, 54: 2002042669, 55: 2000023214, 56: 73201460, 57: 67211095, 58: 83169864, 59: 13196665, 60: 2000055604, 61: 2000011411, 62: 2000165964, 63: 73201458, 64: 2002042939, 65: 2002043635, 66: 2002043613, 67: 2000045698, 68: 2002042722, 69: 2000132382, 70: 49054633, 71: 2002042845, 72: 2000045520, 73: 73201505, 74: 73201458, 75: 70137157, 76: 49040506, 77: 2002043635, 78: 2000143548, 79: 73200890, 80: 49060705, 81: 2000045543, 82: 2000045698,
83: 2000011617, 84: 2002042722, 85: 2002042642, 86: 2000113673, 87: 85137101, 88: 19217413, 89: 2000147147, 90: 2002042845, 91: 2002043003, 92: 2002042627, 93: 2002042966, 94: 2000047331, 95: 2002042666, 96: 2000134665, 97: 2002042690, 98: 2000011617, 99: 2000045698, 100: 49060705, 101: 2000047331, 102: 2000147147, 103: 2000134665, 104: 2000113673, 105: 73200890, 106: 2002042845, 107: 19217413, 108: 2000045543, 109: 2002043003, 110: 2002042722, 111: 2002042666, 112: 2002042966, 113: 2002042627, 114: 2002042690, 115: 2002042642, 116: 85137101, 117: 2000134665, 118: 2002042666, 119: 2002042627, 120: 2000047331, 121: 2002042966, 122: 2002043003, 123: 2002042690, 124: 2002042845, 125: 2000147147, 126: 19217413, 127: 85137101, 128: 2002042722, 129: 2002042642, 130: 2000045543, 131: 2000011617, 132: 2000113673, 133: 49060705, 134: 73200890, 135: 2000045698, 136: 62124125, 137: 2002043171, 138: 2000165960, 139: 2002134617, 140: 2002042690, 141: 2000047311, 142: 2000105477, 143: 2002042627, 144: 2000037444, 145: 49060705, 146: 2002042642, 147: 2002134611, 148: 2002043003, 149: 2002042966, 150: 73201412, 151: 2002042813, 152: 67256520, 153: 2000047306, 154: 2002042983, 155: 12092876, 156: 96026541, 157: 2002043636, 158: 2000165960, 159: 49060705, 160: 12092876, 161: 2002042690, 162: 2002134617, 163: 2002042642, 164: 73201412, 165: 62124125, 166: 2000105477, 167: 2002042966, 168: 96026541, 169: 2002042983, 170: 2000047311, 171: 2002043171, 172: 2002134611, 173: 2002042813, 174: 2000047306, 175: 67256520, 176: 2002043003, 177: 2002043636, 178: 2002042627, 179: 2000037444}, 'niveau': {0: 13.605263157894736, 1: 25.13157894736842, 2: 22.473684210526315, 3: 16.236842105263158, 4: 15.789473684210526, 5: 15.342105263157896, 6: 28.394736842105264, 7: 14.789473684210526, 8: 16.727272727272727, 9: 25.741935483870968, 10: 17.424242424242426, 11: 28.03030303030303, 12: 16.696969696969695, 13: 16.636363636363637, 14: 25.454545454545453, 15: 16.484848484848484, 16: 30.606060606060606, 17: 16.424242424242426, 18: 17.151515151515152, 19: 17.151515151515152, 20: 19.151515151515152, 21: 22.03030303030303, 22: 25.272727272727273, 23: 19.818181818181817, 24: 25.12121212121212, 25: 20.272727272727273, 26: 28.09090909090909, 27: 26.0, 28: 26.06451612903226, 29: 28.545454545454547, 30: 26.242424242424242, 31: 17.454545454545453, 32: 17.606060606060606, 33: 25.757575757575758, 34: 28.333333333333332, 35: 17.09090909090909, 36: 20.575757575757574, 37: 19.454545454545453, 38: 25.272727272727273, 39: 21.575757575757574, 40: 20.12121212121212, 41: 15.969696969696969, 42: 16.393939393939394, 43: 30.303030303030305, 44: 25.515151515151516, 45: 16.939393939393938, 46: 17.03030303030303, 47: 17.87878787878788, 48: 18.142857142857142, 49: 24.37142857142857, 50: 24.057142857142857, 51: 25.4, 52: 15.17142857142857, 53: 23.34285714285714, 54: 28.142857142857142, 55: 15.085714285714285, 56: 16.257142857142856, 57: 23.34285714285714, 58: 23.771428571428572, 59: 22.6, 60: 18.285714285714285, 61: 18.685714285714287, 62: 16.514285714285716, 63: 15.82857142857143, 64: 25.885714285714286, 65: 26.142857142857142, 66: 23.485714285714284, 67: 17.564102564102566, 68: 28.384615384615383, 69: 17.153846153846153, 70: 18.205128205128204, 71: 25.46153846153846, 72: 15.512820512820513, 73: 14.615384615384615, 74: 14.846153846153847, 75: 17.564102564102566, 76: 17.487179487179485, 77: 24.974358974358974, 78: 14.461538461538462, 79: 22.5, 80: 20.0625, 81: 19.84375, 82: 18.9375, 83: 20.25, 84: 31.59375, 85: 33.1875, 86: 18.34375,
87: 24.71875, 88: 26.03125, 89: 18.09375, 90: 28.34375, 91: 29.1875, 92: 32.46875, 93: 30.09375, 94: 18.5625, 95: 31.9375, 96: 15.28125, 97: 32.3125, 98: 19.9375, 99: 18.625, 100: 19.8125, 101: 18.8125, 102: 18.40625, 103: 15.75, 104: 18.03125, 105: 22.1875, 106: 28.09375, 107: 26.34375, 108: 20.15625, 109: 29.4375, 110: 31.34375, 111: 31.78125, 112:
29.84375, 113: 32.21875, 114: 32.625, 115: 33.5, 116: 24.46875, 117: 15.870967741935484, 118: 31.483870967741936, 119: 32.354838709677416, 120: 18.29032258064516, 121: 29.741935483870968, 122: 29.677419354838708, 123: 32.41935483870968, 124: 28.129032258064516, 125: 18.032258064516128, 126: 26.06451612903226, 127: 24.70967741935484, 128: 31.838709677419356, 129: 33.61290322580645, 130: 20.35483870967742, 131: 19.129032258064516, 132: 18.580645161290324, 133: 20.419354838709676, 134: 22.483870967741936, 135: 19.451612903225808, 136: 23.59375, 137: 30.78125, 138: 19.28125, 139: 16.03125, 140: 31.78125, 141: 19.625, 142: 19.09375, 143: 32.0625, 144: 20.65625, 145: 20.625, 146: 32.96875, 147: 20.71875, 148: 29.15625, 149: 29.5, 150: 17.875, 151: 29.0625, 152: 21.28125, 153: 18.84375, 154: 28.4375, 155: 24.84375, 156: 26.53125, 157: 29.0625, 158: 18.8125, 159: 20.375, 160: 24.53125, 161: 32.09375, 162: 15.5625, 163: 33.28125, 164: 18.34375, 165: 23.125, 166: 18.625, 167: 29.25, 168: 26.84375, 169: 28.125, 170: 19.3125, 171: 30.53125, 172: 20.875, 173: 28.75, 174: 18.53125, 175: 21.03125, 176: 29.40625, 177: 29.375, 178: 31.8125, 179: 20.34375}}
df = pd.DataFrame(data)
print(df)
statut id niveau
0 titulaire_01 2002134607 13.605263
1 titulaire_01 2002043469 25.131579
2 titulaire_01 67156610 22.473684
3 titulaire_01 73201503 16.236842
4 titulaire_01 2000165962 15.789474
.. ... ... ...
175 titulaire_11 67256520 21.031250
176 titulaire_11 2002043003 29.406250
177 titulaire_11 2002043636 29.375000
178 titulaire_11 2002042627 31.812500
179 titulaire_11 2000037444 20.343750
Wenn ich groupby (“statut”) mache und das Maximum der Spalte “niveau” behalte, habe ich “id”-Duplikate, eine “id” kann in mehreren “titulaire_01” und “titulaire_02” usw. enthalten sein. Das Ergebnis sollte 11 Zeilen mit sein keine Duplikate
Lösung
Es sieht nach einem Optimierungsproblem aus, Sie können pivot
Ihre Daten in ein rechteckiges Format bringen und dann verwenden scipy.optimize.linear_sum_assignment
:
from scipy.optimize import linear_sum_assignment
df2 = df.pivot_table(index='id', columns='statut', values='niveau',
fill_value=0) # or fill_value=-np.inf
ID, statut = linear_sum_assignment(df2, maximize=True)
out = (pd.DataFrame({'statut': df2.columns[statut], 'id': df2.index[ID]})
.sort_values(by='statut', ignore_index=True)
)
Ausgang:
statut id
0 titulaire_01 2002042688
1 titulaire_02 2002042628
2 titulaire_03 49037900
3 titulaire_04 2002042669
4 titulaire_05 2002043635
5 titulaire_06 2002042722
6 titulaire_07 2002042666
7 titulaire_08 2002042690
8 titulaire_09 2002042627
9 titulaire_10 2002043171
10 titulaire_11 2002042642
Beantwortet von – mozway
Antwort geprüft von – Robin (FixError Admin)